
Superheated steam from the boiler is delivered through 14–16-inch (360–410 mm) diameter piping to the high pressure turbine where it falls in pressure to 600 psi (4.1 MPa) and to 600 °F (320 °C) in temperature through the stage. It exits via 24–26-inch (610–660 mm) diameter cold reheat lines and passes back into the boiler where the steam is reheated in special reheat pendant tubes back to 1,000 °F (500 °C). The hot reheat steam is conducted to the intermediate pressure turbine where it falls in both temperature and pressure and exits directly to the long-bladed low pressure turbines and finally exits to the condenser.
The generator, 30 feet (9 m) long and 12 feet (3.7 m) in diameter, contains a stationary stator and a spinning rotor, each containing miles of heavy copper conductor—no permanent magnets here. In operation it generates up to 21,000 amperes at 24,000 volts AC (504 MWe) as it spins at either 3,000 or 3,600 rpm, synchronized to the power grid. The rotor spins in a sealed chamber cooled with hydrogen gas, selected because it has the highest known heat transfer coefficient of any gas and for its low viscosity which reduces windage losses. This system requires special handling during startup, with air in the chamber first displaced by carbon dioxide before filling with hydrogen. This ensures that the highly explosive hydrogen–oxygen environment is not created.
The power grid frequency is 60 Hz across North America and 50 Hz in Europe, Oceania, Asia and parts of Africa.
chack this out ~! choosing new gas boiler
ReplyDelete